Let A = [-1, 1]. Then, discuss whether the following functions defined on A are one-one, onto, or bijective:
(i) (ii)
(iii) (iv)
Here, A = [-1, 1]
(i)
If,
So, f(x) is one-one.
Also,
Hence, the range is a subset of co-domain A
So, f(x) is not onto.
Therefore, f (x) is not bijective.
(ii)
So, g(x) is not one-one.
Also,
Hence, the range is [0, 1], which is subset of co-domain ‘A’
So, f(x) is not onto.
Therefore, f(x) is not bijective.
(iii)
Hence, f(x) is one-one.
Hence, the range is [-1, 1].
So, h(x) is onto.
Therefore, h(x) is bijective.
(iv)
Therefore, k(x) is not one-one.