Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write the minimum number of ordered pairs to be added in R to make R reflexive and transitive.
Here, R = {(a, a), (b, c), (a, b)}
The minimum number of ordered pairs to be added to make R as reflexive is (b, b) and (c, c) to R. Whereas, to make R transitive, the minimum number of ordered pairs to be added is (a, c) to R.
Therefore, we need 3 ordered pairs to add with R to make it reflexive and transitive.