Get Answers to all your Questions

header-bg qa

Q1    Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

            (iii) 3A - C

Answers (1)

best_answer

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}     C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

  (iii) 3A - C

First multiply each element of A with 3 and then subtract C

     3A -C = 3\begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}  - \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

    3A -C = \begin{bmatrix} 6 &12 \\ 9 & 6 \end{bmatrix}   - \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

     3A -C = \begin{bmatrix} 6-(-2) &12-5 \\ 9-3 & 6-4 \end{bmatrix}

     3A -C = \begin{bmatrix} 8 &7 \\ 6 & 2 \end{bmatrix}

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads