Get Answers to all your Questions

header-bg qa

Q7 Let f, g : R \rightarrow R be defined, respectively by f(x) = x + 1, g(x) = 2x – 3. Find
       f + g, f – g and f/g

Answers (1)

best_answer

It is given that
f,g : R \rightarrow R
f(x)=x+1 \ \ and \ \ g(x) = 2x - 3
Now,
(f+g)x = f(x)+g(x)
                    = (x+1)+(2x-3)
                    = 3x-2
Therefore,
(f+g)x= 3x-2

Now,
(f-g)x = f(x)-g(x)
                    = (x+1)-(2x-3)
                    = x+1-2x+3
                    = -x+4
Therefore,
(f-g)x= -x+4

Now,
\left ( \frac{f}{g} \right )x = \frac{f(x)}{g(x)} , g(x)\neq 0
                =\frac{x+1}{2x-3} \ , x \neq \frac{3}{2}
Therefore, values of (f+g)x,(f-g)x \ and \ \left ( \frac{f}{g} \right )x  are (3x-2),(-x+4) \ and \ \frac{x+1}{2x-3}   respectively
 

 

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads