Get Answers to all your Questions

header-bg qa

Letf(x) = \sqrt{x}\: \: and\: \: g (x) = x be two functions defined in the domain R^+\cup \left \{0\right \}. Find

(i)(f + g) (x)

(ii) (f - g) (x)

(iii) (fg) (x)

(iv) (f/g) (x)

Answers (1)

Given data: f(x) = \sqrt{x}\: \: and\: \: g (x) = x are the two functions which are defined in the domain R^+ \cup \left \{0\right \}

Now, (i) (f+g)(x) = f(x) + g(x)

                  =\sqrt{x} + x

ii) (f-g)(x) = f(x) - g(x)

      =\sqrt{x} - x

iii)(fg)(x) = f(x).g(x)

         = \sqrt{x}.x

       = x^{3/2}

iv) (f/g)(x) = f(x)/g(x)

            = \sqrt{x}/x

            = 1/\sqrt{x}

 

Posted by

infoexpert21

View full answer