Get Answers to all your Questions

header-bg qa

5.  Line \small l is the bisector of an angle \small \angle A and \small B  is any point on \small l. \small BP and \small BQ are perpendiculars from \small B to the arms of \small \angle A (see Fig. ). Show that:

            (ii) \small BP=BQ or \small B is equidistant from the arms of  \small \angle A.    

                                         

Answers (1)

best_answer

In the previous part we have proved that    \small \Delta APB\cong \Delta AQB.

Thus by c.p.c.t. we can write : 

      BP\ =\ BQ

Thus B is equidistant from arms of angle A.

Posted by

Devendra Khairwa

View full answer