O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of the plane through A at right angle to OA.
We have the points O (0, 0, 0) and A (a, b, c) where a, b, and c are direction ratios. We need to find the direction cosines of line OA and the equation of the plane through A at right angle to OA.
To begin with,
We know, if (a, b, c) are the direction ratios of a given vector, then its direction cosines will be:
According to the question, the direction ratios are (a, b, c), therefore the direction cosines of the vector OA are the same as the above formula, that is,
Given, the plane is perpendicular to OA. We know, a normal is a line or vector which is perpendicular to a given object. Therefore, we can say:
Also, the vector equation of a plane where the normal is passing through the plane and passing through is,
Where
Here, the given point in the plane is A (a, b, c).
Substituting the vectors respectively, we get:
Upon simplifying this, we get:
Hence, the required equation of the plane is a² + b² + c² = ax + by + cz.