Get Answers to all your Questions

header-bg qa

Q. 13.29 Obtain the maximum kinetic energy of \beta- particles, and the radiation frequencies of \gamma decays in the decay                    scheme shown in Fig. 13.6. You are given that

                   m(^{198}Au)=197.968233\; u

                   m(^{198}Hg)=197.966760 \; u

                    

Answers (1)

best_answer

\gamma _{1} decays from 1.088 MeV to 0 V

Frequency of \gamma _{1} is

\\\nu _{1}=\frac{1.088\times 10^{6}\times 1.6\times 10^{-19}}{6.62\times 10^{-34}}\\ \nu _{1}=2.637\times 10^{20}\ Hz Plank's constant, h=6.62\times10-34 Js E=h\nu

Similarly, we can calculate frequencies of \gamma _{2} and \gamma _{3}

\\\nu _{2}=9.988\times 10^{19}\ Hz\\ \nu _{3}=1.639\times 10^{20}\ Hz

The energy of the highest level would be equal to the energy released after the decay,

Mass defect is

\\\Delta m=m(_{79}^{196}\textrm{U})-m(_{80}^{196}\textrm{Hg})\\ \Delta m=197.968233-197.966760\\\Delta m=0.001473u

We know 1u = 931.5 MeV/c2

Q value= 0.001473\times931.5=1.3721 MeV

The maximum Kinetic energy of \beta _{1}^{-} would be 1.3721-1.088=0.2841 MeV

The maximum Kinetic energy of \beta _{2}^{-} would be 1.3721-0.412=0.9601 MeV

Posted by

Sayak

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads