Get Answers to all your Questions

header-bg qa

Q3.    On comparing the ratios \frac{a_1}{a_2}\frac{b_1}{b_2} and \frac{c_1}{c_2},  find out whether the following pair of linear equations are consistent, or inconsistent

                (v)    \frac{4}{3}x + 2y = 8; \qquad 2x + 3y = 12

Answers (1)

best_answer

Given, Equations,

\\\frac{4}{3}x + 2y = 8; \qquad\\\\ 2x + 3y = 12

Comparing these equations with  a_1x+b_1y+c_1=0\:and\:a_2x+b_2y+c_2=0, we get 

\\\frac{a_1}{a_2}=\frac{4/3}{2}=\frac{4}{6}=\frac{2}{3},\\\:\frac{b_1}{b_2}=\frac{2}{3}\:\:and\\\:\frac{c_1}{c_2}=\frac{8}{12}=\frac{2}{3}

As we can see 

\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}

It means the given equations have an infinite number of solutions and thus pair of linear equations is consistent.

Posted by

Pankaj Sanodiya

View full answer