Get Answers to all your Questions

header-bg qa

Prove that

    12. \frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt2}{3}

Answers (1)

best_answer

We have to solve the given equation:

\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt2}{3} 

Take \frac{9}{4} as common in L.H.S,

=\frac{9}{4}\left [ \frac{\pi}{2}- \sin^{-1}\frac{1}{3} \right ]

or =\frac{9}{4}\left [ \cos^{-1}\frac{1}{3} \right ]    from      \left [ \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \right ]

Now, assume,

  \left [ \cos^{-1}\frac{1}{3} \right ] = y

Then,

\cos y = \frac{1}{3} \Rightarrow \sin y = \sqrt{1-(\frac{1}{3})^2} = \frac{2.\sqrt2}{3}

Therefore we have now,

y = \sin^{-1} \frac{2.\sqrt2}{3}

So we have L.H.S then = \frac{9}{4}\sin^{-1} \frac{2.\sqrt2}{3}

That is equal to R.H.S.

Hence proved.

 

 

 

 

 

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads