Get Answers to all your Questions

header-bg qa

Prove that 

Q(3) \small \cot ^{2}\left ( \frac{\pi }{6} \right ) + \csc \left ( \frac{5\pi }{6} \right ) + 3\tan ^{2}\left ( \frac{\pi }{6} \right ) = 6

Answers (1)

We know the values of cot(30 degree), tan (30 degree) and cosec (30 degree)

\cot \frac{\pi}{6} = \sqrt{3}\\ \\ cosec\frac{5\pi}{6} = cosec\left ( \pi - \frac{\pi}{6} \right )=cosec\frac{\pi}{6} = 2\\ \\ \tan\frac{\pi}{6}= \frac{1}{\sqrt{3}}

\cot^{2}\frac{\pi}{6} + cosec\frac{5\pi}{6} +3\tan^{2}\frac{\pi}{6} = \left ( \sqrt(3) \right )^{2} + 2 + 3\times\left ( \frac{1}{\sqrt{3}} \right )^{2}\\ \\ \Rightarrow 3+2+1 = 6
                                      R.H.S.

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads