Get Answers to all your Questions

header-bg qa

Prove that , \tan^{-1}\frac{1}{4}+\tan^{-1}\frac{2}{9}=\sin^{-1}\frac{1}{\sqrt{5}}

 

Answers (1)

Solving LHS, \tan^{-1}\frac{1}{4}+\tan^{-1}\frac{2}{9}

Let \tan^{-1}\frac{1}{4}=x

\Rightarrow \tan x=\frac{1}{4}

Squaring both sides,

\Rightarrow \tan^{2} x=\frac{1}{16}

\Rightarrow \sec^{2} x-1=\frac{1}{16}

\Rightarrow \sec^{2} x=\frac{17}{16}

\Rightarrow \frac{1}{\cos^{2}x}=\frac{17}{16}

\Rightarrow \cos^{2}x=\frac{16}{17}

\Rightarrow \cos x=\frac{4}{\sqrt{17}}

Since,\: \sin^{2}x=1-\cos^{2}x

\Rightarrow \sin^{2}x=1-\frac{16}{17}=\frac{1}{17}

\Rightarrow \sin x=\frac{1}{\sqrt{17}}

Again,

Let \tan^{-1}\frac{2}{9}=y

\Rightarrow \tan y=\frac{2}{9}

Squaring both sides,

\Rightarrow \tan^{2}y=\frac{4}{81}

\Rightarrow \sec^{2}y-1=\frac{4}{81}

\Rightarrow \sec^{2}y=\frac{85}{81}

\Rightarrow \frac{1}{\cos^{2}y}=\frac{85}{81}

\Rightarrow \cos^{2}y=\frac{81}{85}

\Rightarrow \cos y=\frac{9}{\sqrt{85}}

Since, \sin^{2}y=1-\cos^{2}y

\Rightarrow \sin^{2}=1-\frac{81}{85}=\frac{4}{85}

\Rightarrow \sin x=\frac{2}{\sqrt{85}}

We know that, \sin(x+y)=\sin x.\sin y+ \cos x.\sin y

\Rightarrow \sin\left ( x+y \right )=\frac{1}{\sqrt{17}}.\frac{9}{\sqrt{85}}+ \frac{4}{\sqrt{17}}.\frac{2}{\sqrt{85}}

\Rightarrow \sin\left ( x+y \right )=\frac{17}{\sqrt{17}.\sqrt{85}}

\Rightarrow \sin\left ( x+y \right )=\frac{\sqrt{17}}{\sqrt{17}.\sqrt{5}}

\Rightarrow \sin\left ( x+y \right )=\frac{1}{\sqrt{5}}

\Rightarrow x+y =\sin^{-1}\frac{1}{\sqrt{5}}=RHS

Since , LHS=RHS

Hence Proved

 

 

 

 

 

 

Posted by

infoexpert24

View full answer