Get Answers to all your Questions

header-bg qa

Q (21)  Prove the following

\small \frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x

Answers (1)

We know that 

\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}\\ and \\ \sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}
We use these identities

\frac{(\cos4x + \cos2x) + \cos3x}{(\sin4x+\sin2x)+\sin3x} = \frac{2\cos3x\cos x + \cos3x}{2\sin3x\cos x+\sin3x} = \frac{2\cos3x(1+\cos x)}{2\sin3x(1+\cos x)}\\ \ \ \\ \ \ \ \ \ \ \ = cot 3x                   

=RHS

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads