Get Answers to all your Questions

header-bg qa

Q (15) Prove the following

\small \cot4x(\sin5x + \sin3x) = \cot x(\sin5x - \sin3x)

Answers (1)

We know that
          \sin x + \sin y = 2\sin\left ( \frac{x+y}{2} \right )\cos\left (\frac{x-y}{2} \right )
By using this , we get 

sin5x + sin3x = 2sin4xcosx

\frac{\cos4x}{\sin4x}\left ( 2\sin4x\cos x \right ) = 2\cos4x\cos x\\ \\

now multiply and divide by sin x

\\\ \\ \frac{2\cos4x\cos x \sin x}{\sin x } \ \ \ \ \ \ \ \ \ \ \\ \\ =\cot x (2\cos4x\sin x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left ( \because \frac{\cos x}{\ sin x} = \cot x \right )\\ \\

Now we know that

\\ 2\cos x\sin y = \sin(x+y) - \sin(x-y)\\ \\

By using this our equation becomes

\\ \\=\cot x (\sin5x - sin3x)\\
                                                      R.H.S.

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads