Q (14) Prove the following
We know that
We are using this identity
sin2x + 2sin4x + sin6x = (sin2x + sin6x) + 2sin4x
sin2x + sin6x = 2sin4xcos(-2x) = 2sin4xcos(2x) ( cos(-x) = cos x)
So, our equation becomes
sin2x + 2sin4x + sin6x = 2sin4xcos(2x) + 2sin4x
Now, take the 2sin4x common
sin2x + 2sin4x + sin6x = 2sin4x(cos2x +1) ( )
=2sin4x( +1 )
=2sin4x()
=
R.H.S.