Get Answers to all your Questions

header-bg qa

Q (10) Prove the following

\small \sin (n+1)x\sin(n+2)x + \cos(n+1)x\cos(n+2)x =\cos x

Answers (1)

Multiply and divide by 2 

= \frac {2\sin(n+1)x \sin(n+2)x + 2\cos (n+1)x\cos(n+2)x}{2}

Now by using identities


-2sinAsinB = cos(A+B) - cos(A-B)
2cosAcosB =  cos(A+B) + cos(A-B)

\frac{\left \{ -\left (\cos(2n+3)x - \cos (-x) \right ) + \left ( \cos(2n+3) +\cos(-x) \right )\right \}}{2}\\ \\ \left ( \because \cos(-x) = \cos x \right )\\ \\ = \frac{2\cos x}{2} = \cos x

                                        R.H.S.

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads