Get Answers to all your Questions

header-bg qa

Q (19)  Prove the following

\small \frac{\sin x + \sin 3x}{\cos x + \cos3x} = \tan2x

Answers (1)

We know that

\\ \sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}\\and\\ \\ \cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}\\ \\ We \ use \ these \ equations \\ \\ \sin x + \sin3x = 2\sin2x\cos(-x) = 2\sin2x\cos x \ \ \ \ \ (\because \cos(-x) = \cos x)\\ \\ \cos x + \cos3x = 2\cos2x\cos(-x) =2\cos2x\cos x \ \ \ \ \ (\because \cos(-x) = \cos x)\\ \\ \frac{\sin x + \sin3x}{\cos x + \cos3x} = \frac {2\sin2x\cos x}{2\cos2x\cos x}= \frac{\sin2x}{\cos2x} = \tan2x                                                                                                           R.H.S.

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads