Refer to Exercise 14. How many sweaters of each type should the company make in a day to get a maximum profit? What is the maximum profit?
When we refer to the exercise, we get the following information:
Let’s take an assumption that the company manufactures x number of type A sweaters and y number of type B. We have made a table for your understanding which is given below:
Thus according to the table, the profit becomes, Z=200x+120y
If we have to maximize the profit, i.e., maximize Z=200x+120y
The subject to constraints is:
The company spends at most Rs 72000 a day
.
Divide throughout by 120, we get
Also, company can make at most 300 sweaters.:
Also, the number of sweaters of type $B$ cannot exceed the number of sweaters of type A by more than 100
i.e.,
And [non-negative constraint]
So, when we convert the inequalities into the equation we get the following answer:
We can say that the line 3x+y=600 meets the coordinate axes (200,0) and (0,600) respectively. Once the points are joined, we get the answer that is 3x+y=600. It is justified that 3x+y≤ 600. So the region that contain the origin represents the solution set of the inequation 3x+y≤ 600
The region represented by x+y≤ 300:
The line when it meets the coordinate axes respectively that is y= 100+x meets (-100,0) and (0,100) respectively and when the lines are joined we get the line y= 100+x. Then it is clarified that it satisfies the inequation. Therefore, the region contains the origin that represents the solution of sets of inequation.
The graph of the same is given:
The shaded region OBCDE is the feasible region is bounded, so, minimum value will occur at a corner point of the feasible region.
Corner Points are O(0,0), B(0,100), C(100,200) , D(150,150) and E(200,0)
Now we will substitute these values in Z at each of these corner points, we get
Hence, the final answer is the maximum profit to the manufacturer is Rs. 48,000, for making 150 sweaters each of type A and type B.