Get Answers to all your Questions

header-bg qa

Q5   Show that each of the given three vectors is a unit vector:
        \frac{1}{7}( 2 \hat i + 3 \hat j + 6 \hat k ), \frac{1}{7}( 3 \hat i- 6 \hat j + 2 \hat k ), \frac{1}{7}( 6\hat i + 2 \hat j -3\hat k )
        Also, show that they are mutually perpendicular to each other.

Answers (1)

best_answer

Given

\\\vec a=\frac{1}{7}( 2 \hat i + 3 \hat j + 6 \hat k ), \\\ \vec b =\frac{1}{7}( 3 \hat i- 6 \hat j + 2 \hat k ),\\\vec c = \frac{1}{7}( 6\hat i + 2 \hat j -3\hat k )

Now magnitude of \vec a,\vec b \:and\: \vec c

\left | \vec a \right |=\frac{1}{7} \sqrt{2^2+3^2+6^2}=\frac{\sqrt{49}}{7}=1

\left | \vec b \right |=\frac{1}{7} \sqrt{3^2+(-6)^2+2^2}=\frac{\sqrt{49}}{7}=1

\left | \vec c \right |=\frac{1}{7} \sqrt{6^2+2^2+(-3)^2}=\frac{\sqrt{49}}{7}=1

Hence, they all are unit vectors.

Now,

\vec a.\vec b=\frac{1}{7}(2\hat i+3\hat j+6\hat k)\frac{1}{7}(3\hat i-6\hat j+2\hat k)=\frac{1}{49}(6-18+12)=0

\vec b.\vec c=\frac{1}{7}(3\hat i-6\hat j+2\hat k)\frac{1}{7}(6\hat i+2\hat j-3\hat k)=\frac{1}{49}(18-12-6)=0

\vec c.\vec a=\frac{1}{7}(6\hat i+2\hat j-3\hat k)\frac{1}{7}(2\hat i+3\hat j-6\hat k)=\frac{1}{49}(12+6-18)=0

Hence all three are mutually perpendicular to each other.

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads