Get Answers to all your Questions

header-bg qa

Show that \tan \left ( \frac{1}{2}\sin^{-1}\frac{3}{4} \right )=\frac{4-\sqrt{7}}{3}  and, justify why the other value \frac{4+\sqrt{7}}{3} is ignored.

Answers (1)

Solving LHS,

=\tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4} \right )

Let \frac{1}{2} \sin^{-1}\frac{3}{4} =\theta

\Rightarrow \sin^{-1}\frac{3}{4} =2\theta

\Rightarrow \frac{3}{4} =\sin2\theta

\Rightarrow \sin2\theta= \frac{3}{4}

\Rightarrow \frac{2 \tan \theta}{1+\tan^{2}\theta}= \frac{3}{4}

\Rightarrow 3+3 \tan^{2}\theta = 8 \tan \theta

\Rightarrow 3 \tan^{2}\theta - 8 \tan \theta =3

Let \tan \theta=y

\therefore 3y^{2}+8y+3=0

\Rightarrow y= \frac{8\pm \sqrt{64-4\times 3\times 3}}{2\times 3}\Rightarrow = \frac{8\pm \sqrt{28}}{6}

\Rightarrow y=\frac{2\left ( 4\pm \sqrt{7} \right )}{2\times 3}

\Rightarrow \tan \theta=\frac{\left ( 4\pm \sqrt{7} \right )}{3}

\Rightarrow \theta=\tan^{-1}\frac{\left ( 4\pm \sqrt{7} \right )}{3}

{ but as we can see , \frac{ 4+ \sqrt{7} }{3}> 1, since max\left [ \tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4}\right ) \right ]=1}

\tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4}\right ) =\frac{4-\sqrt{7}}{3}=RHS

Note: Scince -\frac{\pi}{2}\leq sin^{-1}\frac{3}{4}\leq \frac{\pi}{2}

\Rightarrow -\frac{\pi}{4}\leq \frac{1}{2}sin^{-1}\frac{3}{4}\leq \frac{\pi}{4}

\therefore \tan\left ( -\frac{\pi}{4} \right )\leq \tan\left ( \frac{1}{2}sin^{-1}\frac{3}{4} \right )\leq \tan\left ( \frac{\pi}{4} \right )

\Rightarrow -1\leq \tan\left ( \frac{1}{2}\sin^{-1}\frac{3}{4} \right )\leq 1

 

 

 

 

 

 

 

Posted by

infoexpert24

View full answer