Q: 4 Show that the diagonals of a square are equal and bisect each other at right angles.
 
                
                  Given : ABCD is a square i.e. AB=BC=CD=DA.
To prove : the diagonals of a square are equal and bisect each other at right angles i.e. AC=BD,AO=CO,BO=DO and 
Proof : In BAD and 
ABC,   
   
          (Each 
)
AD=BC (Given )
AB=AB (common)
  BAD 
 
ABC   (By SAS)
BD=AC (CPCT)
In AOB and 
COD, 
 OAB=
OCD        (Alternate angles)
AB=CD (Given )
 OBA=
ODC       (Alternate angles)
  AOB 
 
COD   (By AAS)
AO=OC ,BO=OD (CPCT)
In AOB and 
AOD, 
OB=OD (proved above)
AB=AD (Given )
OA=OA (COMMON)
  AOB 
 
AOD   (By SSS)
  AOB=
AOD           (CPCT)
  AOB+
AOD =
  2. AOB = 
  AOB =
 
Hence, the diagonals of a square are equal and bisect each other at right angles.