Get Answers to all your Questions

header-bg qa

Show that the given differential equation is homogeneous
and solve each of them.

    Q3.    (x-y)dy - (x+y)dx = 0

Answers (1)

best_answer

The given differential eq can be written as;

\frac{dy}{dx}=\frac{x+y}{x-y} = F(x,y)(let\ say)....................................(i)

F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x-\lambda y}= \lambda ^{0}F(x,y)
Hence it is a homogeneous equation.

Now, to solve substitute y = vx
Differentiating on both sides wrt x
\frac{dy}{dx}= v +x\frac{dv}{dx}
                                 
Substitute this value in equation (i)

\\v+x\frac{dv}{dx}= \frac{1+v}{1-v}\\ x\frac{dv}{dx} = \frac{1+v}{1-v}-v =\frac{1+v^{2}}{1-v}

\frac{1-v}{1+v^{2}}dv = (\frac{1}{1+v^{2}}-\frac{v}{1-v^{2}})dv=\frac{dx}{x}
Integrating on both sides, we get;

\tan^{-1}v-1/2 \log(1+v^{2})=\log x+C
again substitute the value of v=y/x
\\\tan^{-1}(y/x)-1/2 \log(1+(y/x)^{2})=\log x+C\\ \tan^{-1}(y/x)-1/2 [\log(x^{2}+y^{2})-\log x^{2}]=\log x+C\\ tan^{-1}(y/x) = 1/2[\log (x^{2}+y^{2})]+C

This is the required solution.

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads