Get Answers to all your Questions

header-bg qa

Show that the given differential equation is homogeneous and solve it.

    Q6.    xdy - ydx = \sqrt{x^2 + y^2}dx

Answers (1)

best_answer

\frac{dy}{dx}=\frac{y+\sqrt{x^{2}+y^{2}}}{x} = F(x,y).................................(i)

F(\mu x,\mu y)=\frac{\mu y+\sqrt{(\mu x)^{2}+(\mu y)^{2}}}{\mu x} =\mu^{0}.F(x,y)
hence it is a homogeneous equation

Now, to solve substitute y = vx

Differentiating on both sides wrt x
\frac{dy}{dx}= v +x\frac{dv}{dx}
                                 
Substitute this value in equation (i)

v+x\frac{dv}{dx}= v+\sqrt{1+v^{2}}=\sqrt{1+v^{2}}

                                                    =\frac{dv}{\sqrt{1+v^{2}}} =\frac{dx}{x}
 

On integrating both sides,

\Rightarrow \log \left | v+\sqrt{1+v^{2}} \right | = \log \left | x \right |+\log C 
Substitute the value of v=y/x , we get

\\\Rightarrow \log \left | \frac{y+\sqrt{x^{2}+y^{2}}}{x} \right | = \log \left | Cx \right |\\ y+\sqrt{x^{2}+y^{2}} = Cx^{2}

Required solution

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads