Get Answers to all your Questions

header-bg qa

Q: 6 Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Answers (1)

best_answer

Given: ABCD is a  quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA. AC, BD are diagonals.

To prove: the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Proof: In \triangleACD,     

S is the midpoint of DA.            (Given)

 R  is midpoint of DC.               (Given)

 By midpoint theorem,

  \small SR\parallel AC  and   \small SR=\frac{1}{2}AC...................................1

  In \triangleABC,

  P is the midpoint of AB.                (Given)

  Q  is the midpoint of BC.               (Given)

  By midpoint theorem,

  \small PQ\parallel AC  and   \small PQ=\frac{1}{2}AC.................................2

From 1 and 2, we get

  \small PQ\parallel SR  and   \small PQ=SR=\frac{1}{2}AC

Thus, \small PQ=SR  and \small PQ\parallel SR

So, the quadrilateral PQRS is a parallelogram and diagonals of a parallelogram bisect each other.

Thus, SQ and PR bisect each other.

 

 

 

 

 

 

   

 

 

 

Posted by

mansi

View full answer