Get Answers to all your Questions

header-bg qa

Q5.    Show that the matrix B′AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.

Answers (1)

best_answer

Let be a  A is symmetric matrix , then   A'=A

Consider,    (B'AB)' ={B'(AB)}'

                                     ={(AB)}'(B')'

                                     = B'A'(B)

                                     = B'(A'B)

      Replace A' by A

                                     =B'(AB)

     i.e.     (B'AB)' =B'(AB)

Thus, if A is symmetric matrix than B'(AB) is a symmetric matrix.

 

Now, let A be a skew symmetric matrix, then A'=-A.

   

                   (B'AB)' ={B'(AB)}'

                                     ={(AB)}'(B')'

                                     = B'A'(B)

                                     = B'(A'B)

                            Replace A' by -A,

                                      =B'(-AB)

                                       = - B'AB

        i.e.     (B'AB)' = - B'AB.

Thus, if A is skew-symmetric matrix then - B'AB  is a skew  symmetric matrix.

Hence, the matrix B′AB is symmetric or skew-symmetric according to as A is symmetric or skew-symmetric.

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads