Get Answers to all your Questions

header-bg qa

Q11   Show that   |\vec a | \vec b + |\vec b | \vec a  is perpendicular to   |\vec a | \vec b - |\vec b | \vec a , for any two nonzero vectors  \vec a \: \: \: and \: \: \vec b.

Answers (1)

best_answer

Given in the question that -

 \vec a \: \: \: and \: \: \vec b are two non-zero vectors 

According to the question

\left ( |\vec a | \vec b + |\vec b | \vec a\right )\left (|\vec a | \vec b - |\vec b | \vec a \right )

=|\vec a |^2 |\vec b|^2 - |\vec b |^2 |\vec a|^2+|\vec b||\vec a|\vec a.\vec b-|\vec a||\vec b|\vec b.\vec a=0

Hence |\vec a | \vec b + |\vec b | \vec a  is perpendicular to   |\vec a | \vec b - |\vec b | \vec a.

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads