Get Answers to all your Questions

header-bg qa

1.    Solve

            (g)  \frac{3}{4}-\frac{1}{3}                       (h)  \frac{5}{5}-\frac{1}{3}                            (i)  \frac{2}{3}+\frac{3}{4}+\frac{1}{2}

            (j)  \frac{1}{2}+\frac{1}{3}+\frac{1}{6}                (k)  1\frac{1}{3}+3\frac{2}{3}                        (l)  4\frac{2}{3}+3\frac{1}{4}

           (m)  \frac{16}{5}-\frac{7}{5}                       (n)   \frac{4}{3}-\frac{1}{2}

Answers (1)

best_answer

    (g)     \frac{3}{4}-\frac{1}{3}\ =\ \frac{3\times 3\ -\ 1\times 4}{12}\ =\ \frac{5}{12}

     (h)    \frac{5}{5}-\frac{1}{3}\ =\ \frac{5\times 3\ -\ 1\times 5}{15}\ =\ \frac{10}{15}\ =\ \frac{2}{3}

     (i)    \frac{2}{3}+\frac{3}{4}+\frac{1}{2}\ =\ \frac{2\times 4\ +\ 3\times 3}{12}\ +\ \frac{1}{2}\ =\ \frac{17}{12}\ +\ \frac{1}{2}\ =\ \frac{17\times 2\ +\ 1\times 12}{24}

                                      =\ \frac{46}{24}\ =\ \frac{23}{12}

     (j)  \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\ =\ \frac{1\times 3\ +\ 1\times 2}{6}\ +\ \frac{1}{6}\ =\ \frac{5}{6}\ +\ \frac{1}{6}\ =\ \frac{6}{6}\ =\ 1

     (k)    1\frac{1}{3}+3\frac{2}{3}\ =\ \frac{4}{3}\ +\ \frac{11}{3}\ =\ \frac{15}{3}\ =\ 5

       (l)   4\frac{2}{3}+3\frac{1}{4}\ =\ \frac{14}{3}\ +\ \frac{13}{4}\ =\ \frac{14\times 4\ +\ 13\times 3}{12}\ =\ \frac{95}{12}\

    (m)   \frac{16}{5}-\frac{7}{5}\ =\ \frac{16\ -\ 7}{5}\ =\ \frac{9}{5}    

     (n)   \frac{4}{3}-\frac{1}{2}\ =\ \frac{4\times2\ -\ 1\times3}{6}\ =\ \frac{5}{6}

Posted by

Sanket Gandhi

View full answer