Get Answers to all your Questions

header-bg qa

Solve the inequality and show the graph of the solution on number line

    Q20.    \frac{x}{2} \geq \frac{(5x-2)}{3} - \frac{(7x-3)}{5}

Answers (1)

best_answer

Given :   \frac{x}{2} \geq \frac{(5x-2)}{3} - \frac{(7x-3)}{5}

\Rightarrow      \frac{x}{2} \geq \frac{5(5x-2)-3(7x-3)}{15}

\Rightarrow \, \, \, 15x \geq 10(5x-2) - 6(7x-3)

\Rightarrow \, \, \, 15x \geq 50x-20 - 42x+18

\Rightarrow \, \, \, 15x+42x-50x \geq 18-20

\Rightarrow \, \, \, 7x \geq -2

\Rightarrow \, \, \, x \geq \frac{-2}{7}

 x are  real numbers greater than and equal to \frac{-2}{7}

Hence, values of x can be  as  x\in (-\frac{2}{7},\infty )

The graphical representation of solutions of the given inequality is as : 

 

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads