Get Answers to all your Questions

header-bg qa

Solve the inequality for real x

    Q12.    \frac{1}{2}\left(\frac{3x}{5} + 4 \right ) \geq \frac{1}{3}(x - 6)

Answers (1)

best_answer

Given :   \frac{1}{2}\left(\frac{3x}{5} + 4 \right ) \geq \frac{1}{3}(x - 6)

\Rightarrow      \frac{1}{2}\left(\frac{3x}{5} + 4 \right ) \geq \frac{1}{3}(x - 6)

\Rightarrow \, \, 3\left(\frac{3x}{5} + 4 \right ) \geq 2(x - 6)

\Rightarrow \, \, \frac{9x}{5} + 12 \geq 2x-12

\Rightarrow \, \, 12+12 \geq 2x-\frac{9x}{5}

 \Rightarrow \, \, 24 \geq \frac{x}{5}

\Rightarrow \, \, 120 \geq x

x are  real numbers less than equal to 120.

Hence, values of x can be  as  x\in (-\infty,120 ].

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads