Get Answers to all your Questions

header-bg qa

Solve the inequality for real x

    Q16.    \frac{(2x - 1)}{3} \geq \frac{3x-2}{4} - \frac{(2-x)}{5}

Answers (1)

best_answer

Given :   \frac{(2x - 1)}{3} \geq \frac{3x-2}{4} - \frac{(2-x)}{5}

\Rightarrow      \frac{(2x - 1)}{3} \geq \frac{3x-2}{4} - \frac{(2-x)}{5}

\Rightarrow \, \, \, 20(2x - 1) \geq 15(3x-2) - 12(2-x)

\Rightarrow \, \, \, 40x - 20 \geq 45x-30 - 24+12x

 \Rightarrow \, \, \, 30+24 - 20 \geq 45x-40x+12x

\Rightarrow \, \, \, 34 \geq 17x

\Rightarrow \, \, \, 2 \geq x

x are  real numbers less than equal 2.

Hence, values of x can be  as  x\in (-\infty,2 ].

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads