Get Answers to all your Questions

header-bg qa

Solve.

    Q9.    ydx + x\log\left(\frac{y}{x} \right ) -2xdy = 0

Answers (1)

best_answer

\frac{dy}{dx}= \frac{y}{2x-x \log(y/x)} = F(x,y)..................(i)

\frac{\mu y}{2\mu x-\mu x \log(\mu y/\mu x)} = F(\mu x,\mu y) = \mu^{0}.F(x,y)

hence it is a homogeneous eq

Now, to solve substitute y = vx
Differentiating on both sides wrt x
\frac{dy}{dx}= v +x\frac{dv}{dx}
                                 
Substitute this value in equation (i)

\\=v+x\frac{dv}{dx}= \frac{v}{2-\log v}\\ =x\frac{dv}{dx} = \frac{v\log v-v}{2-\log v}\\ =[\frac{1}{v(\log v-1)}-\frac{1}{v}]dv=\frac{dx}{x}
integrating on both sides, we get; (substituting v =y/x)

\\\Rightarrow \log[\log(y/x)-1]-\log(y/x)=\log(Cx)\\\Rightarrow \frac{x}{y}[\log(y/x)-1]=Cx\\ \Rightarrow \log (y/x)-1=Cy

This is the required solution of the given differential eq

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads