Get Answers to all your Questions

header-bg qa

State True or False for the statements

If the determinant \left|\begin{array}{ccc} x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h \end{array}\right|  splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8

Answers (1)

\\ Given \left|\begin{array}{ccc} x + a & p + u & 1 + f \\ y + b & q + v & m + g \\ z + c & r + w & n + h \end{array}\right|\\ Split row 1\\ \Rightarrow\left|\begin{array}{ccc} x + a & p + u & 1 + f \\ y + b & q + v & m + g \\ z + c & r + w & n + h \end{array}\right| = \left|\begin{array}{ccc} x & p & 1 \\ y + b & q + v & m + g \\ z + c & r + w & n + h \end{array}\right| + \left|\begin{array}{ccc} a & u & f \\ y + b & q + v & m + g \\ z + c & r + w & n + h \end{array}\right|\

Split row 2

\\ \begin{array}{ccc} \left|\begin{array}{ccc} \mathrm{x} & \mathrm{p} & 1 \\ \mathrm{y} & \mathrm{q} & \mathrm{m} \\ \mathrm{z}+\mathrm{c} & \mathrm{r}+\mathrm{w} & \mathrm{n}+\mathrm{h} \end{array}\right|+\left|\begin{array}{ccc} \mathrm{a} & \mathrm{u} & \mathrm{f} \\ \mathrm{y} & \mathrm{q} & \mathrm{m} \\ \mathrm{z}+\mathrm{c} & \mathrm{r}+\mathrm{w} & \mathrm{n}+\mathrm{h} \end{array}\right|+\left|\begin{array}{ccc} \mathrm{x} & \mathrm{p} & \mathrm{l} \\ \mathrm{b} & \mathrm{v} & \mathrm{g} \\ \mathrm{z}+\mathrm{c} & \mathrm{r}+\mathrm{w} & \mathrm{n}+\mathrm{h} \end{array}\right| \\ & +\left|\begin{array}{ccc} \mathrm{a} & \mathrm{u} & \mathrm{f} \\ \mathrm{b} & \mathrm{v} & \mathrm{g} \\ \mathrm{z}+\mathrm{c} & \mathrm{r}+\mathrm{w} & \mathrm{n}+\mathrm{h} \end{array}\right| \end{array}

We can split all the rows in the same way. Thus the statement given in the question is true.

 

Posted by

infoexpert22

View full answer