Get Answers to all your Questions

header-bg qa

Q. 8 Suppose X has a binomial distribution  B\left [ 6,\frac{1}{2} \right ]. Show that X=3 is the most likely outcome.

            (Hint : P(X=3) is the maximum among all of P(x_{i}) ,x_{i}=0,1,2,3,4,5,6 )

Answers (1)

best_answer

X is a random variable whose binomial distribution is  B\left [ 6,\frac{1}{2} \right ].

Here , n=6 and  P=\frac{1}{2}.

\therefore \, \,q=1-P= 1-\frac{1}{2}= \frac{1}{2}

\therefore \, \, \, \, P(X=x)=^nC_x.q^{n-x}.p^x

                               =^{6}C_x .(\frac{1}{2})^{6-x}(\frac{1}{2})^x

                                =^{6}C_x (\frac{1}{2})^6

      P(X=x) is maximum if  ^{6}C_x is maximum.

    ^{6}C_0 =^{6}C_6 =\frac{6!}{0!.6!}=1

  ^{6}C_1 =^{6}C_5 =\frac{6!}{1!.5!}=6

^{6}C_2 =^{6}C_4 =\frac{6!}{2!.4!}=15

^{6}C_3 =\frac{6!}{3!.3!}=20

^{6}C_3 is maximum so for x=3 ,P(X=3)  is maximum.

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads