Get Answers to all your Questions

header-bg qa

10. The area of an equilateral triangle ABC is 17320.5 cm2. With each vertex of the triangle as the centre, a circle is drawn with a radius equal to half the length of the side of the triangle (see Fig.). Find the area of the shaded region. (Use\pi = 3.14 and \sqrt3 = 1.73205)

Answers (1)

best_answer

Area of an equilateral triangle  =\ \frac{\sqrt{3}}{4}\times a^2

\frac{\sqrt{3}}{4}\times a^2\ =\ 17320.5                                                    

a\ =\ 200\ cm                                                                

Now, consider the sector:-  Angle of the sector is 60o and the radius is 100 cm.

 Thus the area of the sector =\ \frac{60^{\circ}}{360^{\circ}}\times \pi \times 100^2

=\ \frac{15700}{3}\ cm^2                                                   

Thus the area of the shaded region =\ 17320.5\ -\ 3\times \frac{15700}{3}

=\ 1620.5\ cm^2                                                        

Posted by

Devendra Khairwa

View full answer