Get Answers to all your Questions

header-bg qa

The domain and range of real function f defined by f (x) =\sqrt{ x-1} is given by

 

    1. Domain = (1, \infty), Range = (0, \infty)
    2. Domain = [1, \infty), Range = (0, \infty)
    1. Domain = [1, \infty), Range = [0, \infty)
    2. Domain = [1, \infty), Range = [0, \infty)

 

Answers (1)

Given data: f (x) =\sqrt{ x-1}

f(x) is defined x-1 \geq 0

& domain of f(x) = [1,\infty)

Now, let y = f(x) =\sqrt{ x-1}

               y^2 = x - 1

Thus, x = y^2 + 1

Now, if x is real then y should \in R

Thus, Range of f(x) = [0,\infty)

Hence opt (d) is the correct answer.
 

Posted by

infoexpert21

View full answer