Get Answers to all your Questions

header-bg qa

Q : 4     The paint in a certain container is sufficient to paint an area equal to \small 9.375\hspace{1mm} m^2.  How many bricks of dimensions \small 22.5\hspace {1mm}cm \times 10\hspace {1mm}cm \times 7.5\hspace {1mm}cm can be painted out of this container?

Answers (1)

best_answer

Given, dimensions of the brick = \small 22.5\hspace {1mm}cm \times 10\hspace {1mm}cm \times 7.5\hspace {1mm}cm

We know, Surface area of a cuboid =2(lb+bh+hl)

\therefore The surface area of a single brick = 2(22.5\times10+10\times7.5+7.5\times22.5)

= 2(225+75+166.75) = 937.5\ cm^2 = 0.09375\ m^2

\therefore Number of bricks that can be painted = \frac{Total\ area\ the\ container\ can\ paint}{Surface\ area\ of\ a\ single\ brick}

= \frac{9.375}{0.09375} = 100

Therefore, the required number of bricks that can be painted = 100

Posted by

HARSH KANKARIA

View full answer