Get Answers to all your Questions

header-bg qa

Q: 15     The perpendicular from the origin to a line meets it at the point (-2,9) , find the equation of the line. 

Answers (1)

best_answer

Let the slope of the line is m
and slope of a perpendicular line is which passes through the origin (0, 0) and (-2, 9) is
m' = \frac{9-0}{-2-0}= \frac{9}{-2}
Now, the slope of the line is
m = -\frac{1}{m'}= \frac{2}{9}
Now, the equation of line passes through the point (-2, 9) and with slope \frac{2}{9}  is
(y-9)=\frac{2}{9}(x-(-2))\\ \\ 9(y-9)=2(x+2)\\ 2x-9y+85 = 0
Therefore, the equation of the line is   2x-9y+85 = 0
 

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads