Get Answers to all your Questions

header-bg qa

Q : 6    The volume of a right circular cone is \small 9856\hspace{1mm}cm^3. If the diameter of the base is 28 cm, find

            (i) height of the cone

Answers (1)

best_answer

Given, a right circular cone.

The radius of the base of the cone = r = \frac{28}{2} = 14\ cm

The volume of the cone = \small 9856\hspace{1mm}cm^3

(i) Let the height of the cone be h\ m

We know,
The volume of a right circular cone = \frac{1}{3}\pi r^2 h

\therefore   \frac{1}{3}\times\frac{22}{7}\times(14)^2\times h = 9856

\\ \Rightarrow \frac{1}{3}\times\frac{22}{7}\times14\times14\times h = 9856 \\ \Rightarrow \frac{1}{3}\times22\times2\times14\times h = 9856 \\ \Rightarrow h = \frac{9856\times3}{22\times2\times14} \\ \\ \Rightarrow h =48\ cm

Therefore, the height of the cone is 48\ cm

 

Posted by

HARSH KANKARIA

View full answer