Get Answers to all your Questions

header-bg qa

Q : 3         Using Cofactors of elements of second row, evaluate     .\small \Delta =\begin{vmatrix} 5 &3 &8 \\ 2 & 0 & 1\\ 1 &2 &3 \end{vmatrix}

Answers (1)

best_answer

Given determinant : \small \Delta =\begin{vmatrix} 5 &3 &8 \\ 2 & 0 & 1\\ 1 &2 &3 \end{vmatrix}

First finding Minors of the second rows by the definition,

M_{21} = minor of  a_{21} = \begin{vmatrix} 3 &8 \\ 2 &3 \end{vmatrix} =9-16 = -7    

M_{22} = minor of  a_{22} = \begin{vmatrix} 5 &8 \\ 1 &3 \end{vmatrix} = 15-8=7       

M_{23} = minor of  a_{23} = \begin{vmatrix} 5 &3 \\ 1 &2 \end{vmatrix} = 10-3 =7

Finding the Cofactors of the second row:

A_{21}= Cofactor of a_{21} = (-1)^{2+1}M_{21} = 7

A_{22}= Cofactor of a_{22} = (-1)^{2+2}M_{22} = 7

A_{23}= Cofactor of a_{23} = (-1)^{2+3}M_{23} = -7

Therefore we can calculate  \triangle by sum of the product of the elements of the second row with their corresponding cofactors.

Therefore we have,

\triangle = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = 2(7) +0(7) +1(-7) =14-7=7 

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads