Get Answers to all your Questions

header-bg qa

Q : 4         Using integration find the area of region bounded by the triangle whose vertices are \small (-1,0),(1,3) and \small (3,2)

Answers (1)

best_answer

So, we draw BL and CM perpendicular to x-axis.

Then it can be observed in the following figure that,

Area(\triangle ACB) = Area (ALBA)+Area(BLMCB) - Area (AMCA)

We have the graph as follows:

Equation of the line segment AB is:

y-0 = \frac{3-0}{1+1}(x+1)   or   y = \frac{3}{2}(x+1)

Therefore we have Area of ALBA 

=\int_{-1}^1 \frac{3}{2}(x+1)dx =\frac{3}{2}\left [ \frac{x^2}{2}+x \right ]_{-1}^1

=\frac{3}{2}\left [ \frac{1}{2}+1-\frac{1}{2}+1 \right ] =3units.

So, the equation of line segment BC is

y-3 = \frac{2-3}{3-1}(x-1)   or   y= \frac{1}{2}(-x+7)

Therefore the area of BLMCB will be,

=\int_1^3 \frac{1}{2}(-x+7)dx =\frac{1}{2}\left [ -\frac{x^2}{2}+7x \right ]_1^3

= \frac{1}{2}\left [ -\frac{9}{2}+21+\frac{1}{2}-7 \right ] =5units.

Equation of the line segment AC is,

y-0 = \frac{2-0}{3+1}(x+1)   or   y = \frac{1}{2}(x+1)

Therefore the area of AMCA will be,

=\frac{1}{2}\int_{-1}^3 (x+1)dx =\frac{1}{2}\left [ \frac{x^2}{2}+x \right ]_{-1}^3

=\frac{1}{2}\left ( \frac{9}{2}+3-\frac{1}{2}+1 \right ) = 4units.

Therefore, from equations (1), we get

The area of the triangle \triangle ABC =3+5-4 =4units. 

 

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads