Get Answers to all your Questions

header-bg qa

Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.

Answers (1)

We have,

Given:

There are more than 1 parallelogram, and their bases can be taken as common and they are between same parallels.

To Prove:

These parallelograms whose bases are same and are between the same parallel sides have equal area.

Proof:

Let ABCD and ABFE be two parallelograms on the same base AB and between same parallel lines AB and DF.

Here,

AB || DC and AE || BF

We can represent area of parallelogram ABCD as,

\text { Area of parallelogram } \mathrm{ABCD}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}_{\ldots \text { .. } \mathrm{i} \text { ) }}

Now, area of parallelogram ABFE can be represented as,

Area of parallelogram ABFE 

\\ \begin{aligned} &=\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AE}}\\ &=\overrightarrow{\mathrm{AB}} \times(\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{DE}})\\ &[\because \text { in right-angled } \triangle A D E, \overrightarrow{A E}=\overrightarrow{A D}+\overrightarrow{D E}]\\ &\Rightarrow \text { Area of parallelogram } \mathrm{ABFE}=\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}}+\mathrm{ka})\\ &[\because \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{b}} \text { and } \overrightarrow{\mathrm{DE}}=\mathrm{ka}, \text { where } \mathrm{k} \text { is scalar; } \overrightarrow{\mathrm{DE}} \text { is parallel }\\ &\overrightarrow{\mathrm{AB}}_{\text {and }}\\ &\text { hence } \overrightarrow{\mathrm{DE}}=\mathrm{ka}_{1} \end{aligned}

\\ \begin{aligned} &=\vec{a} \times \vec{b}+\vec{a} \times k \vec{a}\\ &=\vec{a} \times \vec{b}+k(\vec{a} \times \vec{a})\\ &[\because \text { a scalar term can be taken out of a vector product] }\\ &=\vec{a} \times \vec{b}+k \times 0\\ &\left[\because \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{a}}=0\right]. \end{aligned}

⇒Area of parallelogram ABFE=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}  …(ii)

From equation (i) and (ii), we can conclude that

Area of parallelogram ABCD = Area of parallelogram ABFE

Thus, parallelogram on same base and between same parallels are equal in area.

Hence, proved.

Posted by

infoexpert22

View full answer