Get Answers to all your Questions

header-bg qa

7.(b)    Which of the following cannot be the valid assignment of probabilities for outcomes of sample Space  S=\left \{ \omega _1,\omega _2,\omega _3,\omega _4,\omega _5,\omega _6,\omega _7 \right \}

Assignment

\omega _1 \omega _2 \omega _3 \omega _4 \omega _5 \omega _6

\omega _7

(b) 

\frac{1}{7}

\frac{1}{7}

\frac{1}{7}

\frac{1}{7}

\frac{1}{7}

\frac{1}{7}

\frac{1}{7}

    

 

Answers (1)

best_answer

(b) Condition (i): Each of the number p( \omega_i ) is positive and less than one.

Condition (ii): Sum of probabilities = \frac{1}{7}+\frac{1}{7}+\frac{1}{7}+\frac{1}{7}+\frac{1}{7}+\frac{1}{7}+\frac{1}{7} = 1

Therefore, the assignment is valid

Posted by

HARSH KANKARIA

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads