Get Answers to all your Questions

header-bg qa

12.  Write the first five terms of each of the sequences in Exercises 11 to 13 and obtain the corresponding series:

       a _ 1 = -1 , a _ n = \frac{a_{n-1}}{n} , n \geq 2

Answers (1)

best_answer

Given : a _ 1 = -1 , a _ n = \frac{a_{n-1}}{n} , n \geq 2

a _ 2 = \frac{a_{2-1}}{2} =\frac{a_1}{2}=\frac{-1}{2}

a _ 3 = \frac{a_{3-1}}{3} =\frac{a_2}{3}=\frac{-1}{6}

a _ 4 = \frac{a_{4-1}}{4} =\frac{a_3}{4}=\frac{-1}{24}

a _ 5 = \frac{a_{5-1}}{5} =\frac{a_4}{5}=\frac{-1}{120}

Hence, five terms of series are -1,\frac{-1}{2},\frac{-1}{-6},\frac{-1}{24},\frac {-1}{120}

Series  

               =-1+\frac{-1}{2}+\frac{-1}{-6}+\frac{-1}{24}+\frac {-1}{120}.........................

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads