Get Answers to all your Questions

header-bg qa

Explain Solution for RD Sharma Maths Class 12 Chapter 17 Maxima and Minima Exercise Fill in the blanks Question 12 maths textbook solution

Answers (1)

Answer:

              \frac{1}{e}

Hint:

For maxima or minima we must have {f}'\left ( x \right )=0

Given:  f\left ( x \right )=y=xe^{-x}

Solution:

Let y=xe^{-x}

Now differentiate it

\frac{dy}{dx}=e^{-x}-xe^{-x} (product rule)

\frac{dy}{dx}=e^{-x}\left ( 1-x \right )For max/min 

X=1

Hence maximum value of given expression occurs at x=1

\begin{aligned} &y_{\max }=(1) e^{-1}=\frac{1}{e} \\ &y_{\max }=\frac{1}{e} \end{aligned}

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads