Get Answers to all your Questions

header-bg qa

Explain Solution for RD Sharma Maths Class 12 Chapter 17 Maxima and Minima Exercise Fill in the blanks Question 15 maths textbook solution

Answers (1)

Answer:

              2

Hint:

For maxima or minima, we must have {f}'\left ( x \right )=0

Given:

x & y  are two real numbers such that x >0 and xy=1

Solution:

Let f\left ( x \right )=x+y  where xy=1

\begin{aligned} &f(x)=x+\frac{1}{x} \\ &f^{\prime}(x)=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}} \\ &f^{\prime \prime}(x)=\frac{2}{x^{3}} \end{aligned}

On putting {f}'\left ( x \right )=0  we get

x=\underline{+}1 butx> 0  (Neglecting x=-1 )

{{f}'}'\left ( x \right )> 0 forx=1

Hence f\left ( x \right )  attains minimum at x=1,y=1

\left ( x+y \right ) has minimum value 2

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads