Get Answers to all your Questions

header-bg qa

    Explain Solution for RD Sharma Maths Class 12 Chapter 17 Maxima and Minima Exercise Fill in the blanks Question 20 maths textbook solution

Answers (5)

Answer:

              2

Hint:

For maxima or minima we must have {f}'\left ( x \right )=0

Given: f(x)=\frac{x}{2}+\frac{2}{x}

Solution:

\begin{aligned} &f(x)=\frac{x}{2}+\frac{2}{x} \\ &f^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}} \end{aligned}

For extremum{f}'\left ( x \right )=0

\frac{1}{2}-\frac{2}{x^{2}}=0

x=\underline{+}2

 {{f}'}'\left ( x \right )=\frac{4}{x^{3}}> 0forx=2

\therefore x=2 is the point of minima

\therefore Given function has local minima at x=2

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Answer:

              2

Hint:

For maxima or minima we must have {f}'\left ( x \right )=0

Given: f(x)=\frac{x}{2}+\frac{2}{x}

Solution:

\begin{aligned} &f(x)=\frac{x}{2}+\frac{2}{x} \\ &f^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}} \end{aligned}

For extremum{f}'\left ( x \right )=0

\frac{1}{2}-\frac{2}{x^{2}}=0

x=\underline{+}2

 {{f}'}'\left ( x \right )=\frac{4}{x^{3}}> 0forx=2

\therefore x=2 is the point of minima

\therefore Given function has local minima at x=2

Posted by

Infoexpert

View full answer

Answer:

              2

Hint:

For maxima or minima we must have {f}'\left ( x \right )=0

Given: f(x)=\frac{x}{2}+\frac{2}{x}

Solution:

\begin{aligned} &f(x)=\frac{x}{2}+\frac{2}{x} \\ &f^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}} \end{aligned}

For extremum{f}'\left ( x \right )=0

\frac{1}{2}-\frac{2}{x^{2}}=0

x=\underline{+}2

 {{f}'}'\left ( x \right )=\frac{4}{x^{3}}> 0forx=2

\therefore x=2 is the point of minima

\therefore Given function has local minima at x=2

Posted by

Infoexpert

View full answer

Answer:

              2

Hint:

For maxima or minima we must have {f}'\left ( x \right )=0

Given: f(x)=\frac{x}{2}+\frac{2}{x}

Solution:

\begin{aligned} &f(x)=\frac{x}{2}+\frac{2}{x} \\ &f^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}} \end{aligned}

For extremum{f}'\left ( x \right )=0

\frac{1}{2}-\frac{2}{x^{2}}=0

x=\underline{+}2

 {{f}'}'\left ( x \right )=\frac{4}{x^{3}}> 0forx=2

\therefore x=2 is the point of minima

\therefore Given function has local minima at x=2

Posted by

Infoexpert

View full answer

Answer:

              2

Hint:

For maxima or minima we must have {f}'\left ( x \right )=0

Given: f(x)=\frac{x}{2}+\frac{2}{x}

Solution:

\begin{aligned} &f(x)=\frac{x}{2}+\frac{2}{x} \\ &f^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}} \end{aligned}

For extremum{f}'\left ( x \right )=0

\frac{1}{2}-\frac{2}{x^{2}}=0

x=\underline{+}2

 {{f}'}'\left ( x \right )=\frac{4}{x^{3}}> 0forx=2

\therefore x=2 is the point of minima

\therefore Given function has local minima at x=2

Posted by

Infoexpert

View full answer