Get Answers to all your Questions

header-bg qa

Explain Solution for RD Sharma Maths Class 12 Chapter 17 Maxima and Minima Exercise Fill in the blanks Question 21 maths textbook solution

Answers (1)

Answer:

              2\sqrt{ab}

Hint:

For maxima or minima we must have {f}'\left ( x \right )=0

Given:

 f\left ( x \right )=ax+\frac{b}{x}                                   a> 0,b> 0,x> 0                             

Solution:

f\left ( x \right )=ax+\frac{b}{x}

{f}'\left ( x \right )=a-\frac{b}{x^{2}}

For critical points

{f}'\left ( x \right )=0

a-\frac{b}{x^{2}}=0

x^{2}=\frac{b}{a}

x=\underline{+}\sqrt{\frac{b}{a}}

But x> 0

x=\sqrt{\frac{b}{a}}

{{f}'}'\left ( x \right )=-b\left ( \frac{-2}{x^{3}} \right )

{{f}'}'\left ( x \right )=\frac{2b}{x^{3}}

{{f}'}'\ \left ( \sqrt{\frac{b}{a}} \right ) =\frac{2b}{\left ( \sqrt{\frac{a}{b}} \right )^{3}}> 0 as a> 0,b> 0

At x=\sqrt{\frac{b}{a}}  we will get minimum value

f\left ( \sqrt{\frac{b}{a}} \right )=a\cdot \sqrt{\frac{b}{a}}+b\cdot \sqrt{\frac{a}{b}}

=\sqrt{ab}+\sqrt{ab}

=2\sqrt{ab}

\therefore The least value of f\left ( x \right )  is =2\sqrt{ab}

 

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads