Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 23 Scalar or Dot Products Exercise Very Short Answer question 17

Answers (1)

ANSWER:  3,-4,12

GIVEN:  \vec{r}=3 \hat{i}-4 \hat{j}+12 \hat{k}

HINTS: Find the projection on each coordinate axis one by one.

SOLUTION:We know that,

Component along x-axis= \hat{i}

Component along y-axis= \hat{j}

Component along z-axis= \hat{k}

Now projection of :  \vec{r} on x axis = \frac{\vec{r\cdot \hat{i}}}{\left | \hat{i} \right |}

\begin{aligned} &=\frac{(3 \hat{i}-4 \hat{j}+12 \hat{k}) \hat{.}}{\sqrt{1}} \\ & \end{aligned}

=\frac{3-0+0}{1}=3\qquad[\because \hat{i} \times \hat{i}=1, \hat{i} \times \hat{j}=0, \hat{i} \times \hat{k}=0]

projection of  \vec{r} on y axis  \frac{\vec{r\cdot \hat{j}}}{\left | \hat{j} \right |}

\begin{aligned} &=\frac{(\hat{i}-4 \hat{j}+12 \hat{k}) \hat{. j}}{\sqrt{1}} \\ & \end{aligned}

=\frac{0-4+0}{1}=-4\qquad[\because \hat{i} \times \hat{i}=0, \hat{j} \times \hat{j}=1, \hat{j} \times \hat{k}=0]

projection of  \vec{r} on y axis  \frac{\vec{r\cdot \hat{k}}}{\left | \hat{k} \right |}

\begin{aligned} &=\frac{(3 \hat{i}-4 \hat{j}+12 \hat{k}) \cdot \hat{k}}{\sqrt{1}} \\ & \end{aligned}

=\frac{0-0+12}{1}=12\qquad[\because \hat{i} \times \hat{k}=0, \hat{i} \times \hat{k}=0, \hat{k} \times \hat{k}=1]

Hence ,required answer is  3,-4,12

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads