Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 28 The Plane exercise 28.11 question 13

Answers (1)

Answer: \sin ^{-1}\left(\frac{\sqrt{7}}{\sqrt{52}}\right)

Hint:  Use formula \sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}

Given: Line is \frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-3}{2} and plane is  3 x+4 y+z+5=0

Solution: We know that line

            \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}   is parallel to plane a_{2} x+b_{2} y+c_{2} z+d_{2}=0

            If  a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0

and the angle between them is given by

            \sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}                        …………….. (1)

Now, given equation by line is

            \frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-3}{2}

So, a_{1}=3, b_{1}=-1, c_{1}=2

Equation of plane is  3 x+4 y+z+5=0

So, \begin{aligned} a_{2}=& 3, b_{2}=4, c_{2}=1 \& d_{2}=-5 \\ \end{aligned}

            \sin \theta=\frac{3 \times 3+(-1) \times 4+2 \times 1}{\sqrt{3^{2}+(-1)^{2}+2^{2}} \sqrt{3^{2}+4^{2}+1^{2}}} \\

            \sin \theta =\frac{9-4+2}{\sqrt{9+1+4} \sqrt{9+16+1}}

                      \begin{aligned} &=\frac{7}{\sqrt{14} \sqrt{26}} \times \frac{\sqrt{7}}{\sqrt{7}} \\ & \end{aligned}

                      =\frac{7 \sqrt{7}}{7 \sqrt{52}}=\frac{\sqrt{7}}{\sqrt{52}}

           \sin \theta=\frac{\sqrt{7}}{\sqrt{52}} \Rightarrow \theta=\sin ^{-1}\left(\frac{\sqrt{7}}{\sqrt{52}}\right)

The angle between the plane and the line is  \theta=\sin ^{-1}\left(\frac{\sqrt{7}}{\sqrt{52}}\right)

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads