Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 28 The Plane exercise multiple choice question 16 maths

Answers (1)

Answer:

 Option (b)

Hint:

 Use simultaneous equation.

Given:

 (-1, -5, -10)

Solution:

Let the point of intersection of the line

\overrightarrow{r}.(2\widehat{i}-\widehat{j}+2\widehat{k})+\lambda (3\widehat{i}+4\widehat{j}+12\widehat{k}) -1, -5

And the plane

\overrightarrow{r}.(\widehat{i}-\widehat{j}+\widehat{k})=5 \text { be } \left (x_0,y_0,z_0 \right )

As x0, y0, z0 is the point of intersection of the line and the plane, so the position vector of this point i.e.,

\overrightarrow{r_0}.(x_0\widehat{i}+y_0\widehat{j}+z_0\widehat{k})

Must satisfy both equations of line and the equation of plane.

Substituting \overrightarrow{r_0} in plane of \overrightarrow{r} in both the equations, we get,

(x_0\widehat{i}+y_0\widehat{j}+z_0\widehat{k})=(2\widehat{i}-\widehat{j}+2\widehat{k})+\lambda (3\widehat{i}+4\widehat{j}+12\widehat{k})

and

(x_0\widehat{i}+y_0\widehat{j}+z_0\widehat{k}).(\widehat{i}-\widehat{j}+\widehat{k})=5 \qquad \qquad \dots (2)

Substituting, these values in equation (2)

\begin{aligned} &\left [ ((2+3\lambda )\times 1)-(1\times (-1+4\lambda )) \right ]+\left [ 1\times (2+12\lambda ) \right ]=5\\ &2+3\lambda +1-4\lambda +2+12\lambda =5\\ &11\lambda =0\\ &\lambda =0 \end{aligned}

Therefore,

\begin{aligned} &x_0=2+3\lambda \\ &=2,\\ &y_0=-1+4\lambda \\ &=-1\\ &z_0=2+12\lambda \\ &=2 \end{aligned}

Hence, the point of intersection is (2, -1, 2)

Now, the distance between the point (-1, -5, -10) and (2, -1, 2) is

\begin{aligned} &=\sqrt{[2-(-1)]^2+[(-1)-(-5)]^2+[2-(-10)]^2}\\ &=\sqrt{3^2+4^2+12^2}\\ &=\sqrt{169}\\ &=13 \end{aligned}

Hence, the required distance between the point (-1, -5, -10) and the point where the line

\begin{aligned} &\overrightarrow{r}.(2\widehat{i}-\widehat{j}+2\widehat{k})+\lambda (3\widehat{i}+4\widehat{j}+12\widehat{k}) \end{aligned}

And the plane

\begin{aligned} &\overrightarrow{r}.(\widehat{i}-\widehat{j}+\widehat{k})=5 \end{aligned}

intersects is 13 units

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads